Distinct roles of light-activated channels TRP and TRPL in photoreceptors of Periplaneta americana

نویسندگان

  • Paulus Saari
  • Andrew S French
  • Päivi H Torkkeli
  • Hongxia Liu
  • Esa-Ville Immonen
  • Roman V Frolov
چکیده

Electrophysiological studies in Drosophila melanogaster and Periplaneta americana have found that the receptor current in their microvillar photoreceptors is generated by two light-activated cationic channels, TRP (transient receptor potential) and TRPL (TRP-like), each having distinct properties. However, the relative contribution of the two channel types to sensory information coding by photoreceptors remains unclear. We recently showed that, in contrast to the diurnal Drosophila in which TRP is the principal phototransduction channel, photoreceptors of the nocturnal P. americana strongly depend on TRPL. Here, we perform a functional analysis, using patch-clamp and intracellular recordings, of P. americana photoreceptors after RNA interference to knock down TRP (TRPkd) and TRPL (TRPLkd). Several functional properties were changed in both knockdown phenotypes: cell membrane capacitance was reduced 1.7-fold, light sensitivity was greatly reduced, and amplitudes of sustained light-induced currents and voltage responses decreased more than twofold over the entire range of light intensities. The information rate (IR) was tested using a Gaussian white-noise modulated light stimulus and was lower in TRPkd photoreceptors (28 ± 21 bits/s) than in controls (52 ± 13 bits/s) because of high levels of bump noise. In contrast, although signal amplitudes were smaller than in controls, the mean IR of TRPLkd photoreceptors was unchanged at 54 ± 29 bits/s1 because of proportionally lower noise. We conclude that TRPL channels provide high-gain/high-noise transduction, suitable for vision in dim light, whereas transduction by TRP channels is relatively low-gain/low-noise and allows better information transfer in bright light.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jgp_201611737 455..464

In insect photoreceptors, absorption of a photon by a visual pigment molecule triggers a cascade of biochemical reactions culminating in opening of cationic channels belonging to the TRP (transient receptor potential) superfamily (Hardie, 2014). Until recently, these light-activated channels were identified and studied exclusively in the fruit fly Drosophila melanogaster. Its photoreceptors exp...

متن کامل

Unitary recordings of TRP and TRPL channels from isolated Drosophila retinal photoreceptor rhabdomeres: activation by light and lipids.

Transient receptor potential (TRP) channels play key roles in sensory transduction. The TRP family founding members, the Drosophila light-dependent channels, were previously studied under voltage clamp, but had not been characterized in intact rhabdomeres at single-channel level. We report patch-clamp recordings from intact isolated photoreceptors of wt and mutant flies lacking TRP (trp(343)), ...

متن کامل

Two stages of light-dependent TRPL-channel translocation in Drosophila photoreceptors.

Transient receptor potential (TRP) channels across species are expressed in sensory receptor cells, and often localized to specialized subcellular sites. In Drosophila photoreceptors, TRP-like (TRPL) channels are localized to the signaling compartment, the rhabdomere, in the dark, and undergo light-induced translocation into the cell body as a mechanism for long-term light-adaptation. We show t...

متن کامل

In Vivo Analysis of the Drosophila Light-Sensitive Channels, TRP and TRPL

We have tested the proposal that the light-sensitive conductance in Drosophila is composed of two independent components by comparing the wild-type conductance with that in mutants lacking one or the other of the putative light-sensitive channel subunits, TRP and TRPL. For a wide range of cations, ionic permeability ratios in wild type were always intermediate between those of trp and trpl muta...

متن کامل

TRP, TRPL and Cacophony Channels Mediate Ca2+ Influx and Exocytosis in Photoreceptors Axons in Drosophila

In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2017